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Optical classification of algae species with a glass lab-on-a-chip
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The identification of submillimetre phytoplankton is important for monitoring environmental and

climate changes, as well as evaluating water for health reasons. Current standard methods for

phytoplankton species identification require sample collection and ex situ analysis, an expensive

procedure which prevents the rapid identification of phytoplankton outbreaks. To address this, we use

a glass-based microchip with a microchannel and waveguide included on a monolithic substrate, and

demonstrate its use for identifying phytoplankton species. The microchannel and the specimens inside it

are illuminated by laser light from the curved waveguide as algae-laden water is passed through the

channel. The intensity distribution of the light collected from the biochip is monitored with an external

photodetector. Here, we demonstrate that the characteristics of the photodiode signal from this simple

and robust system can provide significant and useful information as to the contents of the channel.

Specifically, we show first that the signals are correlated to the size of algae cells. Using a pattern-

matching neural network, we demonstrate the successful classification of five algae species with an

average 78% positive identification rate. Furthermore, as a proof-of-concept for field-operation, we

show that the chip can be used to distinguish between detritus in field-collected water and the toxin-

producing cyanobacterium Cyanothece.
Introduction

As primary producers of oxygen, phytoplankton are vital to the

earth and the identification of microscopic phytoplankton is

important for a wide variety of environmental monitoring

applications. While thousands of species exist over a wide range

of environmental conditions, a given area is often dominated by

several species, which can vary according to the local environ-

mental conditions, the time of year, and by human interventions,

both deliberate and unintentional. The dynamics of the species

populations in a given body of water is thus a useful biomarker

for changes occurring in the water and surrounding area.1 In

addition to environmental monitoring, the examination of

species is a public health issue: some algae and cyanobacteria

produce toxins known to cause negative health effects to animals

and humans, including cancer, liver failure, and death.1–4

The continued demand for low-cost, portable, robust algae

monitoring is driven by several factors, including increased

public and governmental attention on algae-related health and

safety problems and on climate concerns. For example, regula-

tions introduced by the European Union require the monitoring

of the ecological status and bathing (recreational) water quality

of lakes using, for example, cyanobacteria and algae as markers.5

Additionally, the identification of algal species is required for
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applications such as the analysis of ballast water6 and in the

development of biofuels based on algal biomass.7,8

We present an optofluidic chip-based approach to algae

species identification. The device is based on a laser-modified

piece of monolithic glass, which provides a robust and low-cost

system for particle and algae identification. We demonstrate that

the signals obtained from algae and particle specimens can be

used to determine the size of the specimen, as well as to classify

species in a mixture of five algae species and to distinguish the

toxin-producing cyanobacterium Cyanothece from detritus

collected from a field sample, the latter two classifications using

neural networks for pattern recognition.
State of the art

The current gold standard for the identification of microscopic

phytoplankton species (hereafter referred to as algae for conve-

nience) is the collection of samples and later ex situ manual

identification via microscopy by highly trained individuals.

Various instrumentation approaches have been presented to

automate the identification of algae, some in situ but most in

a laboratory. On the largest scale, oceanographic images taken

by satellites can be analysed to identify large algae blooms; other

in situ approaches typically perform bulk quantification, by

measuring the scattering or fluorescence of a volume of water.

Laboratory-based analysis of samples often includes a chemical

analysis of the pigments found in a sample or a measurement of

the optical absorption spectrum of a sample. These approaches
Lab Chip

http://dx.doi.org/10.1039/c2lc21091f
http://dx.doi.org/10.1039/c2lc21091f
http://dx.doi.org/10.1039/c2lc21091f
http://dx.doi.org/10.1039/c2lc21091f
http://dx.doi.org/10.1039/c2lc21091f
http://dx.doi.org/10.1039/c2lc21091f
http://pubs.rsc.org/en/journals/journal/LC


D
ow

nl
oa

de
d 

by
 T

E
C

H
N

IS
C

H
E

 U
N

IV
E

R
SI

T
E

IT
 E

IN
D

H
O

V
E

N
 o

n 
09

 M
ar

ch
 2

01
2

Pu
bl

is
he

d 
on

 0
7 

M
ar

ch
 2

01
2 

on
 h

ttp
://

pu
bs

.r
sc

.o
rg

 | 
do

i:1
0.

10
39

/C
2L

C
21

09
1F

View Online
can provide very accurate information about the qualitative

composition of the sample, but do not quantify the number or

size of algae in the sample.

Yentsch et al.9 pioneered the use of flow cytometers in algae

species identification, and that technique has been improved

upon by many groups through the present using as-purchased or

custom-modified flow cytometers, with data often analysed

through discriminant analysis10,11 or neural networks.12,13 The

move to in situ real-time monitoring has been made by a few

companies, such as CytoBuoy.14,15

With the development of integrated microfluidic lab-on-a-

chip systems has come progress in the development of micro-

flow cytometers.16 While the use of these devices for phyto-

plankton identification remains relatively rare, it has been

demonstrated. Benazzi et al.17 presented a microfluidic system

with external optics for microflow cytometry and integrated

electrodes for impedance spectroscopy measurements. More

recently, a microfluidic chip with waveguides inserted to the

material as a part of the fabrication process was shown to

provide clusters of fluorescence properties by species.18 Both of

these systems demonstrated that two phytoplankton from

different phyta and one cyanobacteria had clearly distinct

clusters in plots of the measured fluorescence. However, the use

of flow cytometric principles requires that any integrated

detection system includes multiple robust laser sources, wave-

length-selective filters, and sensitive detectors, which make size

and cost reduction difficult.

Femtosecond laser fabrication has been demonstrated as

a successful means of microchip fabrication in past work

including, for example, chips for the observation of living cells,19

for the detection and counting of cells,20,21 and for single-cell

optical trapping and stretching.22 We have also previously

demonstrated the use of the present chip for particle counting23

and the simple distinguishing between two algae categories with

manually imposed selection criteria.24 Here we present a more

complete study of the abilities of the device, demonstrating that

its output signals can be matched to algae cell volume, that it can

be used to classify five mixed algae species, and that it can

distinguish between field-sampled detritus and lab-cultured

algae.
Materials and methods

System principle and setup

The system presented consists of a glass chip with a curved

waveguide directing light across a microchannel through which

algae-laden water flows (Fig. 1). A fiber-injected laser source is

coupled into the waveguide, and the light is detected after it exits

the waveguide and crosses the channel with an off-chip four-

quadrant detector.

Femtosecond laser exposure combined with chemical etching

was used to form a 100 mm by 100 mm cross-section micro-

channel on the surface of the glass and a curved 8 mm by 8 mm

waveguide buried 50 mm below the surface. The channel is

approximately 4 cm long, and the waveguide’s Dn is 6.5 � 10�3,

with a radius of curvature of 18 mm, and the optical loss of the

waveguide is approximately 0.4 dB over its length. The wave-

guide end is located 500 mm from the microchannel, with the
Lab Chip
axis of the waveguide perpendicular to that of the micro-

channel. The distance between the end of the optical waveguide

and the channel is enough that the light exciting from the

waveguide (NA ¼ 0.12) expands enough to illuminate the entire

height of the channel. Further details of the use of femtosecond

lasers for fused silica fabrication have been presented previ-

ously25,26 as have details on the fabrication process for this

specific chip.24

During experiments, a syringe pump moved particle- or algae-

laden water through the channel at 0.4 mL min�1. A microscope

objective (20�) and a camera were positioned above the channel,

so that the particles or algae could later be identified manually

and used to verify the accuracy of the classification system. A

laser source (1550 nm) was coupled to the waveguide at the edge

of the glass piece. The waveguide’s size ensures a stable single-

mode light intensity profile. The curve prevents uncoupled light

from interacting with the photodiode, increasing the signal to

noise ratio of the system. The light coming out of the waveguide

slowly diverged (the waveguide NA is about 0.12) and illumi-

nated a four-quadrant detector after passing through the

microchannel. The photodetector (New Focus model 2903) was

configured such that it returns two signals: one, the intensity of

the total detected light (Itotal ¼ A + B + C + D, as in Fig. 1) and

the other, the difference between the two upstream detectors

and the two downstream detectors (DX ¼ (A + B) � (C + D), as

in Fig. 1). As the sample passed through the channel, the

photodetector signal was monitored and triggered the collection

and storage of 100 ms of data at 2 kHz from the photodetector

any time the DX signal passed over a user-programmable

threshold. Simultaneously, the capture of an image from the

camera was triggered. This image is later used for measuring the

accuracy of the detection method.

Strategy for analysis and classification

Data analysis followed several steps: first, the micrograph of the

channel and algae for each dataset was examined to manually

identify the algae or particle. Second, several features of the

total-intensity and differential signals (Itotal and DX in Fig. 1)

were extracted and subsets of these signal features were used to

explore the capabilities of the system through various analyses.

The first test looked for correlations between the algae or

microsphere size and the photodiode signal features. The second

was a classification analysis, to group the algae by species using

the signals obtained from the device. Lastly, a test of a field-

collected sample spiked with cultured algae was analyzed to test

the differentiation between the algae and the detritus collected

from a local river.

Signal characterization

To characterize each particle’s or algae cell’s photodiode signal,

four characteristics of the total intensity (Itotal) and differential

(DX) signals were found. These characteristics were the

maximum value, the minimum value, the summed signal, and the

summed rectified signal divided by the maximum value.

In equation form, for the DX signal, these are

maxðDXÞ minðDXÞP ðDX Þ PðabsðDXÞÞ�maxðDXÞ
This journal is ª The Royal Society of Chemistry 2012
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Fig. 1 (Left) Schematic of the system which features a curved waveguide to direct laser light across a microchannel onto a photodetector; (right)

a typical signal obtained, and a photo, triggered by the signal rising above a threshold, of a Cyanothece specimen (circled) in the microchannel. The

channel width (indicated with the white scale bar) is 100 mm.

Table 1 Algae species

Species name Short name Culture number

Cyanothece aeruginosa S1 NIVA-CYA 258/2
Scenedesmus acuminatus S2 NIVA-CHL 58
Chlorella vulgaris S3 NIVA-CHL 19
Microcystis viridis S4 NIVA-CYA 122/3
Anabaenopsis sp. S5 NIVA-CYA 417
Navicula pelliculosa S6 NIVA-BAC 42
Pseudokirchneriella subcapitata S7 NIVA-CHL 1
Pseudanabaena sp. S8 NIVA-CYA 504
Monoraphidium griffithii S9 NIVA-CHL 8
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Microsphere and algae size correlations

The literature on algae suggests that knowledge of the size

distribution of the algae present in a body of water can be

a valuable tool for monitoring the species dynamics.27 With this

motivation, polystyrene microspheres were used to examine the

specimen size dependence of the photodetector signals, inde-

pendent of the varied geometries of the algae. Additionally, nine

species of algae were measured and similarly examined (see the

Specimens section, below). The total change in the Itotal signal

during each passing specimen (that is, the difference between the

maximum and the minimum value) was recorded from samples

of each size of particle and species of algae.

Neural network classification

The classification of algae by species, and the differentiation

between field samples and lab-cultured algae were performed

with a neural network analysis using the pattern recognition

feature of the neural network toolbox from the commercially

available software MATLAB. In both cases, 10 hidden neurons

were used in the network, 70% of the data were used for training

for the classification algorithm, and all eight parameters used to

characterize the signals obtained from each specimen were used

as inputs to the neural network.

Specimens

Polystyrene microspheres (Corpuscular Inc.) were used for some

experiments, to examine the specimen size-dependence of the

signal, independent of the varied geometries of the algae. The

microspheres had nominal diameters 5 mm, 10 mm, and 20 mm.

The spheres were examined by micrograph and a fairly wide

distribution of sizes was found; thus in particle size-dependent

tests, it was decided to measure the diameter of each individual

incident microsphere rather than force a classification into one of

the three nominal sizes.

Algae cultures were obtained from the Norwegian Water

Research Institute; species, abbreviations, and culture numbers
This journal is ª The Royal Society of Chemistry 2012
are listed in Table 1. They were stored in Z8 buffer28 and diluted

with water shortly before use. Micrograph images were used to

make measurements of a random selection of 20 cells of each

algae species. The volume of each cell was estimated using

combinations of simple geometric models—spheres, ellipses,

cylinders, and cones—chosen to most closely resemble the cells of

each species.

Water was collected from the surface of the slow-moving

nearby Dommel River, a tributary of the Maas River, and was

used as the basis for the field-sample testing of the device. The

river water was passed through a coarse filter to remove material

larger than the channel itself, and then lab-cultured Cyanothece

was added to the river water. After mixing, micrographs of the

sample were taken to examine the appearance of the non-Cya-

nothece material in the water (Fig. 6), and then the mixture was

passed through the microfluidic channel chip. 106 Cyanothece

specimen and 216 detritus specimen were manually identified

from the simultaneously captured images.
Results and discussion

Data collected from monocultured algae species (Fig. 2), from

the polystyrene microspheres, from the mixture of five algae

species, and from the mixture of river-collected detritus and
Lab Chip
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Fig. 2 Differential (DX) and total (Itotal) photodiode signals obtained from nine species of algae, with corresponding micrographs, forming the basis of

a library for comparison of data obtained by the optofluidic chip. Data were collected at 2 kHz for 100 ms; 70 ms of data are shown here, with the scaling

on the y-axis in arbitrary units.
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lab-cultured algae formed the basis for the studies of the chip’s

capabilities and limitations.
Fig. 3 The maximum change over time in the total intensity signal from

the photodiode was correlated to the average diameter of the micro-

spheres; the diameter of each sphere was measured from the photo of the

channel taken simultaneously with the photodiode data and was grouped

into the nearest integer diameter. The total number of microspheres was

N ¼ 2994.
Microsphere/algae size correlation results

The widespread of the microsphere sizes identified with micro-

graphs motivated a higher resolution of size-classification than

the nominal three sizes. The images of the microspheres taken

while they were in the channel were processed so that the

diameter of each individual sphere could be recorded along with

and compared to the photodiode signals. The channel depth was

larger than the depth of focus of the microscope objective used to

image the channel contents, so the processing step also removed

poorly focussed images from consideration, to prevent errors in

diameter measurements. After this step, 2994 recorded micro-

sphere datasets remained. The results of the comparison, shown

in Fig. 3, are presented with the spheres grouped into integer

diameters. The microspheres were tested in a mixture of glycerol

and water, to prevent their sinking to the bottom of the channel

while in the wide channel entrance area, and the data are thus

presented separately, as the index of refraction of glycerol is

different from that of water.

Monocultures of algae were run, one species at a time, until at

least one thousand instances of each species had been recorded.

Within each species, of the images that could be positively
Lab Chip
identified as that species, 525 were chosen at random and the

photodiode signals compared to the species size. The algae sizes

were not measured individually with the in-channel images, but
This journal is ª The Royal Society of Chemistry 2012
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Fig. 5 The change over time in the total intensity signal from the

photodiode was correlated to the average equivalent spherical diameter

of the algae cells; the equivalent spherical diameter is a mean of the

measurements of twenty micrographs, and the change in total intensity

signal is an average of over 525 occurrences of each species.
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those images were used to manually identify the species, and the

photodiode signal was compared to the average equivalent

diameter of the species.

This approach had to be taken for the algae due to high

uncertainties that would be present in the in-channel size

measurements. These uncertainties were lower with the micro-

spheres because they were in glycerol, which has an index of

refraction closer to that of glass, which led to clearer images.

Both the microsphere and monoculture algae data showed that

the average total change in the total intensity photodiode signal

max(Itotal) � min(Itotal) closely correlated well with the micro-

sphere diameter or algae equivalent spherical diameters.

Species classification by neural network

Five species of algae, S1, S3, S4, S5, and S9 (Table 1), were mixed

and data collected; the first 100 � 10 incidences of each species

were considered the dataset for classification. All four charac-

teristics of the total intensity (Itotal) and differential (DX)

signals—those described above, in ‘‘Signal characterization’’—

were used as inputs to the neural network.

The neural network classifications successfully identified the

species of 78% of the algae in the dataset (Fig. 4). The smallest

species of the algae samples (Chlorella vulgaris, S3, roughly

spherical algae with a 6 mm diameter) was the least successfully

identified. On the other hand, the larger Cyanothece (S1), Ana-

baenopsis (S5), and Monoraphidium (S9) were all identified with

success rates above the average success rate for the five species.

Their equivalent spherical diameters were on average 2.0, 1.7,

and 1.4 times larger than S3’s, respectively. As can be seen from

the algae size data (Fig. 5), the smaller-volume algae had less

distinct and species-dependent changes in the photodiode Itotal
signal than the larger ones; this could be a contributing factor to

the lower success rate in distinguishing the smallest species.

Distinguishing Cyanothece from field-collected detritus

The same neural network classification was applied to data

obtained from the mixture of Cyanothece and river water
Fig. 4 Results of neural network classification of five mixed species of

algae; species abbreviations are as in Table 1. The correctly identified

tests are bordered in a bold line.

This journal is ª The Royal Society of Chemistry 2012
detritus, to establish a preliminary understanding of how this

approach would perform in a field-deployable device.

Of the 106 Cyanothece, 100 were correctly classified as Cya-

nothece by the neural network; of the 216 detritus samples, 207

were correctly classified as such. This means that 8% of the

samples identified as Cyanothece were false positives, while 3% of

the samples identified as detritus were false negatives. This high

rate of success is likely primarily attributable to the distinct and

regular geometry of the Cyanothece relative to that of the

detritus, which included other algae as well as irregularly shaped

matter (Fig. 6).
Device performance and field deployability

Various aspects of the current device design could be modified to

improve performance in a field-deployable system. The two main

concerns are those of microchannel clogging and throughput

rates.
Fig. 6 Compounded image of lab-cultured Cyanothece (green spheres/

ellipses) and amid detritus (other algae, plant matter) from the field-

collected sample. The scale bar (bottom of the image) is 100 mm.

Lab Chip
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The potential for channel clogging would be significant in an

uncontrolled, outdoor environment. An ideal system would be

able to handle phytoplankton ranging in size from 1 mm up to

several hundred micrometres,29 which could be accomplished by

creating multiple parallel sensing channels of different sizes, with

a rough size-based pre-sorting step upstream of the sensors. Even

so, a pre-filtering system would be necessary to ensure that

objects larger than the largest microchannel did not pass into the

system. Such a filtration system could use a membrane filter,

which has the disadvantage of becoming clogged with time,

potentially affecting the device’s pressure and flow rate charac-

teristics and eventually needing cleaning or replacement. An

alternative, particularly at high flow rates, might be a flow-

dynamics-based method, such as the virtual impactors used to

remove large airborne particles from aerosol samplers.

To sample as much water as possible, the device throughput

rate would need to be increased as much as possible without loss

of information. As it is used currently, the device’s flow rate is

limited by the need to take clear photos of the algae in the

microchannel for separate, manual identification to confirm the

device performance. Without this limitation, the flow rate could

be significantly increased, as long as the collection rate of the

photodiode data increased correspondingly. Even with the

photodiode and data acquisition system presently used, the data

collection rate could be increased at least 20-fold if the in situ

images were not collected. The other aspect to throughput rate—

that of data analysis—would depend on the eventual system.

Portable systems with pre-defined neural networks implemented

on microcontrollers have been demonstrated for other

applications.30
Conclusions

This simple, robust, monolithic optofluidic chip with a micro-

channel and integrated, sub-surface curved waveguide yields

data suitable for the classification of microspheres and algae. It

has been shown to provide size-sensitive information, as well as

to provide sufficient information for the classification of five

different algae species with 78% accuracy. The monolithic nature

of the chip renders it less susceptible to mechanical failure than

multi-component devices. Its promise as a field-deployable

device was demonstrated by a success rate of over 90% in dis-

tinguishing between cyanobacteria and field-collected detritus.

Our system offers several advantages to the existing tech-

nology in microfluidic-based algae detection. The ability to write

three-dimensional waveguides into the bulk of the material

removes the issues of aligning external optics or of inserting

optical fibres into the system as a fabrication step, making the

device more robust. Furthermore, the detection approach—that

of a single laser source illuminating a single detector—is simple

and requires a minimum number of components, and yet

provides enough data to yield successful and useful results for the

measurement and classification of algal cells.
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